
J. Fluid Mech. (2008), vol. 613, pp. 329–356. c© 2008 Cambridge University Press

doi:10.1017/S0022112008003261 Printed in the United Kingdom

329

On internal waves generated by large-amplitude
circular and rectilinear oscillations of a circular

cylinder in a uniformly stratified fluid

EUGENY V. ERMANYUK AND NIKOLAI V. GAVRILOV
Lavrentyev Institute of Hydrodynamics, 630090, Novosibirsk, Russia

ermanyuk@hydro.nsc.ru

(Received 1 April 2008 and in revised form 26 June 2008)

This paper presents an experimental study of internal waves generated by circular
and rectilinear oscillations of a circular cylinder in a uniformly stratified fluid. The
synthetic schlieren technique is used for quantitative analysis of the internal-wave
parameters. It is shown that at small oscillation amplitudes, the wave pattern observed
for circular oscillations is in good agreement with linear theory: internal waves are
radiated in the wave beams passing through the first and third quadrants of a
Cartesian coordinate system for the clockwise direction of the cylinder motion, and
the intensity of these waves is twice the intensity measured for ‘St Andrew’s cross’
waves generated by purely horizontal or vertical oscillations of the same frequency and
amplitude. As the amplitude of circular oscillations increases, significant nonlinear
effects are observed: (i) a strong density-gradient ‘zero-frequency’ disturbance is
generated, and (ii) a region of intense fluid stirring is formed around the cylinder
serving as an additional dissipative mechanism that changes the shape of wave
envelopes and decreases the intensity of wave motions. In the same range of oscillation
amplitudes, the wave generation by rectilinear (horizontal and vertical) oscillations
is shown to be by and large a linear process, with moderate manifestations of
nonlinearity such as weak ‘zero-frequency’ disturbance and weak variation of the
shape of wave envelopes with the oscillation amplitude. Analysis of spatiotemporal
images reveals different scenarios of transient effects in the cases of circular and
rectilinear oscillations. In general, circular oscillations tend to generate disturbances
evolving at longer time scales.

1. Introduction
It has long been recognized (see e.g. Turner 1973) that internal waves play an

important role in the dynamics of atmosphere and ocean, being responsible for
significant transport of momentum and energy through stratified fluids. Much of
our knowledge of the underlying physics of internal-wave generation, propagation,
decay and interaction with the topography comes from theoretical and experimental
studies of simplified generic problems. For example, investigation of internal-wave
radiation by bodies undergoing small harmonic oscillations in a uniformly stratified
fluid has provided a deep insight into the dynamics of topographically generated
internal waves, in particular, into the non-trivial relation between the spatial structure
of wave beams, geometry of the oscillating disturbance and viscosity of fluid. The
phase pattern of internal-wave beams generated by a vertically oscillating cylinder in
a uniformly stratified fluid has been identified in the seminal paper by Mowbray &
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Rarity (1967). The energy radiated by a vibrating cylinder is known to be spread into
four wave beams inclined at angle θ to the vertical, with the cylinder at the centre of
this pattern known as ‘St Andrew’s cross’ waves. The dispersion relation for internal
waves in a uniformly stratified fluid relates angle θ , which is also the angle between
the group velocity vector and the vertical, with the frequency of oscillations. The
vector of the phase velocity is perpendicular to the vector of group velocity. Since the
wavelength does not appear in the dispersion relation, the spatial structure of internal-
wave beams has no length scale that might be known a priori. Another complication
is that linear theory of ideal uniformly stratified fluid predicts infinite displacements
of fluid particles along the lines tangent to the oscillating body and inclined at angle
θ to the vertical (Hurley 1997). With fluid viscosity taken into account, a realistic
estimate of the cross-beam distribution of the displacements of fluid particles has
been obtained in Hurley & Keady (1997). However, the linear approximate solution
presented in Hurley & Keady (1997) does not fulfil the no-slip condition on the body
surface and therefore neglects the effect of the boundary layers on the surface of
the oscillating body. The approximate solution obtained in Hurley & Keady (1997)
has been confirmed by detailed quantitative measurements of internal wave patterns
generated by small oscillations of circular cylinders (Sutherland et al. 1999, 2000). In
these experiments, the amplitudes of oscillations did not exceed 20 % of the cylinder
radius. Additional support to the theoretical results presented in Hurley (1997) and
Hurley & Keady (1997) has been given by the measurements of forces acting on
oscillating cylinders performed under conditions when both the oscillation amplitude
and the thickness of boundary layers were much smaller than the diameter of the
cylinders (Ermanyuk 2000; Ermanyuk & Gavrilov 2001).

Experiments with elliptic cylinders described in Sutherland & Linden (2002) have
been focused on the effects related with the finite thickness of boundary layers,
finite amplitude of oscillations, and some second-order wave effects, in particular,
generation of the second-harmonic internal waves. Amplitude of oscillation of elliptic
cylinders in Sutherland & Linden (2002) was up to 20 % of the characteristic size of
the cylinders defined as the half-sum of the major and minor half-axes. Cylinders with
aspect ratio of up to 3 have been used, and the ratio of the oscillation amplitude to the
minor half-axis could reach 37 %, allowing us to observe significant nonlinear effects.
The boundary-layer thickness was comparable with the amplitude of oscillations. In
particular, Sutherland & Linden (2002) conclude that for large-amplitude oscillations
‘the nonlinear dynamics involve interactions between waves and boundary layers’,
which deserves further studies. Also Sutherland & Linden (2002) have presented
spatiotemporal images illustrating the duration of transient processes in formation
of wave beams after the start-up of the oscillations. Indeed, the theoretical analysis
presented in Hurley & Keady (1997) is developed for the case of steady-state harmonic
oscillations. Therefore it yields no information on the duration of the transient
processes. Theoretical study (Voisin 2003) of the transient processes has emphasized
complicated non-trivial dynamics of internal-wave beams formation. As discussed
below, nonlinear effects associated with large-amplitude oscillations are likely to
introduce long time scales of the transient phenomena.

In the present paper, we describe experiments on internal-wave generation by a
circular cylinder undergoing harmonic oscillations with amplitudes comparable to the
radius of the cylinder. For a better understanding of the effects introduced by
the boundary-generated vorticity in a real viscous uniformly stratified fluid, we study
the cases of both rectilinear (horizontal and vertical) and circular oscillations. In what
follows, we use the terms ‘circular oscillations’ and ‘orbital motion’ interchangeably
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to denote the motion that can be represented as a sum of two orthogonal sinusoidal
rectilinear oscillations of equal amplitude shifted in phase by ±π/2. The centre of
the body describes a circle while the orientation of the body remains the same
(zero rotation). In principle, as long as the wave generation can be considered a
linear process and the free-slip condition at the cylinder surface is assumed, there
is no fundamental difference between rectilinear and circular oscillations. Both cases
can be described within the framework of Hurley (1997) and Hurley & Keady
(1997). However, with the no-slip condition on the cylinder surface and/or the finite
oscillation amplitude taken into account, we may expect not only a quantitative
but also a qualitative difference between the patterns of internal waves and currents
generated by circular and rectilinear oscillations.

In a homogeneous fluid, rectilinear and circular oscillations of a circular cylinder
generate essentially different mass-transfer secondary currents. Such currents are
known to form four circulating cells in the vicinity of a cylinder undergoing rectilinear
vibrations (see e.g. § 5.13 in Batchelor 1967), and a steady circulation around the
cylinder in the case of circular oscillations (Longuet-Higgins 1970; Riley 1971). Thus,
in the latter case, the mass-transfer current has a non-zero total angular momentum
with respect to the centre of oscillations, whereas in the former case the total angular
momentum is zero. The presence of uniform vertical density stratification hinders
the formation of circulating cells and favours the formation of nearly horizontal
currents. Having regard to the difference of the total angular-momentum balance,
we can expect that circular oscillations of the cylinder in a uniformly stratified fluid
should generate much stronger nearly horizontal mass-transfer currents as opposed
to the case of rectilinear oscillations. In accordance with the dispersion relation for
a uniformly stratified fluid, nearly-horizontal currents can be interpreted as ‘zero-
frequency’ disturbances. Therefore their development after the start-up of the motion
is expected to have long transient time scales.

A feature of the circular oscillations of a circular cylinder is that such motion
allows us to select the direction of wave radiation. This effect was first recognized for
surface waves (see Dean 1948; Ursell 1950; Ogilvie 1963). In the case of small circular
oscillations of a circular cylinder fully submerged in a homogeneous fluid of infinite
depth, progressive surface waves radiate in only one direction (for clockwise motion
the waves radiate to the right). This effect is related with the symmetry/anti-symmetry
properties of wave fields generated by vertical/horizontal oscillations of the circular
cylinder. When the phase shift between vertical and horizontal oscillations is equal
to ±π/2 (i.e. for a circular orbit of the cylinder centre), the outgoing waves on one
side can cancel each other. The linear analysis has been extended to the case of a
two-layer fluid with an interface (Sturova 1994) and a continuous stratification with
homogeneous upper and lower layers with a linearly stratified pycnocline in between
(Sturova 1999). In a more general case, Sturova’s (1999) results imply (personal
communication) that if a circular cylinder is fully submerged in the infinitely deep
homogeneous lower layer, and there exists an arbitrary stable stratification above this
layer, then the orbital motion of such a cylinder in a clockwise direction will generate
only internal waves propagating to the right.

In a uniformly stratified fluid of infinite extent, the classic ‘St Andrew’s cross’
wave pattern (Mowbray & Rarity 1967) suggests four possible directions of wave
radiation. It has been shown experimentally (Gavrilov & Ermanyuk 1997) that in the
case of small circular oscillations of a circular cylinder, the four-beam wave pattern
degenerates into a two-beam pattern so that for a clockwise motion the energy is
radiated only into the first and third quadrants of the Cartesian coordinate system,
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with the origin taken at the centre of the cylinder trajectory. A rigorous theoretical
consideration of this effect is presented in Hurley & Hood (2001) within the framework
of Hurley (1997). This internal-wave pattern has common features with that observed
for baroclinic tides. Numerical and experimental studies on baroclinic tides reveal
the beam-like structure of the internal wave field with a single beam undergoing
reflections between the free surface and the bottom (see e.g. Vlasenko, Stashchuk &
Hutter 2005; Garrett & Kunze 2007; Gostiaux & Dauxois 2007).

In the case of ‘classic’ wave generators undergoing vertical or horizontal oscillations
in a uniformly stratified fluid, only a quarter of the total wave power is radiated in
a single ray. Such ‘classic’ generators have been used in the studies on the beam
reflection at slopes (see e.g. Peacock & Tabaei 2005). A circular cylinder undergoing
the orbital motion may serve as a wave generator concentrating higher energy in a
single beam, which is important in studies of nonlinear processes. A detailed review
of existing methods of the wave-beam generation as well as the novel technique
allowing us to generate a single beam with a remarkably good spatial and temporal
monochromaticity are presented in Gostiaux et al. (2007).

The experimental results of Gavrilov & Ermanyuk (1997) were obtained by a simple
method of colour layering, allowing only a qualitative demonstration of the effect.
In the present paper, we re-visit the problem of internal-wave radiation by circular
oscillations of a circular cylinder in a uniformly stratified fluid. We focus on the
manifestations of nonlinear effects when the radius of the cylinder trajectory increases
and compare the effects observed for circular and rectilinear oscillations of the same
magnitude. As follows from the above introductory notes, in the case of circular
oscillations we may expect strong nonlinear interaction between wave radiation and
vorticity generation at the cylinder surface. On one hand, the stirring region around
the cylinder should increase the effective size of the oscillatory disturbance; on the
other hand, stirring serves as a dissipative mechanism that may essentially decrease
the intensity of the radiated waves. In addition, if the typical size of the stirred
region, the amplitude of oscillations and the size of the body D are comparable
quantities, the time scale of order D2/ν associated with the diffusion of vorticity may
be large compared to the period of oscillations (here ν is the reference kinematic
viscosity of a fluid). Under appropriate conditions, this time scale may have relevance
to the dynamics of the stirring region and, as a result, to the transient processes of
the wave-beam formation.

In the present paper, we also consider the radiation of the second-harmonic wave
when the frequency of oscillations is lower than half of the buoyancy frequency. The
radiation of the second-harmonic wave has been observed in Mowbray & Rarity
(1967). Quantitative measurements of the intensity of perturbations in second- and
first-harmonic waves are presented in Sutherland & Linden (2002). However, it is
difficult to say a priori what would be the ratio between the intensities of second-
and first-harmonic waves in the case of circular oscillations, and whether or not the
second-harmonic wave pattern would consist of two beams instead of four.

As the main experimental tool we use the synthetic schlieren technique described
in Sutherland et al. (1999) and Dalziel, Hughes & Sutherland (2000). Some important
notes concerning the extension of the technique to the optical disturbances without
linearization are presented in Scase & Dalziel (2006). A modification of the synthetic
schlieren technique in the case of an axisymmetric internal wave is described in Onu,
Flynn & Sutherland (2003) and Flynn, Onu & Sutherland (2003).

The description of the experimental installation and techniques is given in § 2 of the
present paper. The results of experiments with internal waves generated by circular
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Figure 1. Notation.

and rectilinear oscillations of a circular cylinder are described in § 3. A brief summary
is presented in § 4.

2. Experimental set-up and procedure
Experiments were carried out in a Perpex test tank of length 160 cm, width 20 cm

and height 50 cm. The tank was filled to a depth of 47 cm with a uniformly stratified
fluid. The ends of the test tank were equipped with wave absorbers made of perforated
flat plates. Uniform stratification was created by the conventional ‘double-bucket’
method. The linearity of the resulting density profile was checked by a conductivity
probe calibrated over the samples of known density. These data were used to evaluate
the background buoyancy (Brunt–Väisälä) frequency N0 = [−(g/ρ)dρ/dy]1/2, where
g is the acceleration due to gravity, and ρ(y) is the undisturbed density distribution
over the vertical coordinate. The value of the background buoyancy frequency in the
present experiments was N0 = 0.9 s−1.

Internal waves were generated by a circular cylinder of diameter D = 2 cm. The
cylinder was fixed to a vertical streamlined support and positioned at the centre of
the fluid volume. The cross-section of the support was 2 × 0.2 cm2. The perturbations
induced by the support were negligibly small. Two mechanical gears were used to
drive the motion. One gear produced vertical or horizontal sinusoidal oscillations,
and the other gear produced circular oscillations. In experiments, the fluid had a free
surface. However, owing to the small frequency of oscillations and the small ratio
between the diameter of the cylinder and the fluid depth, the presence of a free surface
had no detectable effect on the experimental data.

A schematic sketch of notations is shown in figure 1. In the case of circular
oscillations, the variation of coordinates of the cylinder centre C with time is described
(for clockwise motion) by xc = a sin(ωt) and yc = a cos(ωt), where a is the radius of
the cylinder trajectory and ω is the oscillation frequency. Accordingly, the initial
coordinates of the cylinder centre at t = 0 are xc =0 and yc = a. The cases of rectilinear
horizontal and vertical oscillations correspond to yc ≡ 0, xc = −a cos(ωt) and xc ≡ 0,
yc = a cos(ωt), respectively.

The major part of the experimental data obtained with the synthetic schlieren
technique (see e.g. Sutherland et al. 1999, 2000; Sutherland & Linden 2002) is related
to the distribution of the density-gradient disturbances across the main wave beams.
In the present paper we are interested in the general structure of wave disturbances
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around the cylinder. For representation of results we introduce an additional polar
coordinate system rOα (figure 1). To represent the ‘zero-frequency’ disturbance
conveniently, the angular coordinate α is measured in a clockwise direction from
the vertical.

A synthetic schlieren system is used for visualization and quantitative measurement
of internal waves. The theoretical background and experimental implementation are
described in detail in Sutherland et al. (1999) and Dalziel et al. (2000). Synthetic
schlieren is based on the analysis of optical distortions due to internal waves in a
continuously stratified fluid. An image of a screen with a contrasting black and white
pattern is placed at one side of the test tank and is recorded by a digital camera placed
on the other side of the tank. The apparent displacement of the elements of the
pattern can be related to the distortions of the density gradient. The linear analysis
presented in Sutherland et al. (1999) and Dalziel et al. (2000) shows that the apparent
vertical displacement of an element of the pattern δy from its initial position observed
through the fluid at rest is directly proportional to the local change in the buoyancy
frequency so that �N2 = −Bδy . For the set-up used in the present experiments we
have B = 3.34 s−2 cm−1. The constant B is related to the geometrical parameters and
the physical constants of the problem (Sutherland et al. 1999). Keeping the notation
used in (2.11) of Sutherland et al. (1999), the geometrical parameters are the width of
the tank Lt = 20 cm, the distance between the tank and the screen Ls = 31 cm, and the
thickness of the walls of the tank Lp =1.45 cm. The camera was placed at distance
Lc = 300 cm from the test tank. The physical constants include gravity, the indices
of refraction of all substances along the path of a light ray from the screen to the
camera (i.e. air, water and the material the tank walls are made of), and the rate of
change of the index of refraction with the density of solution γ = (ρ00/n00g)(dn/dρ).
Here, ρ00 and n00 are the density and the refraction coefficient at a certain (say, zero)
concentration of a solute. In the present experiments, the stratification was created
using a sugar solution. The corresponding value of γ was evaluated from the data
on the optical properties of sugar–water solutions presented in Bronshtein, Gurov &
Kuznetsov (1959). For a sugar–water solution we have γ = 2.852 × 10−4 s2 cm−1, an
appreciably higher value than γ = 1.878 × 10−4 s2 cm−1 in the case of a salt solution
(see Sutherland et al. 1999).

In the following section, we use a non-dimensional representation of the buoyancy
frequency perturbations in the form wy = −�N2/N2

0 . According to (2.13) in
Sutherland et al. (1999), wy has the physical sense of the derivative of the vertical
displacements of fluid particles in internal wave w(x, y) over vertical coordinate y.

For quantitative measurement of displacements δy and practical implementation of
the synthetic schlieren technique we have used a standard cross-correlation analysis
performed with DANTEC Flowmanager software. The possibility of using a cross-
correlation technique as a tool for synthetic schlieren data treatment has been already
mentioned in Dalziel et al. (2000). A contrast pattern of randomly spaced black
dots was printed on the white illuminated screen placed behind the test tank. The
parameters of the pattern were chosen with regard to recommendations for optimum
particle seeding and size presented in Westerweel (1997). A typical image of the
screen and the cylinder is shown in figure 2. Videos were taken with a FlowSense
M2/E camera having a CCD matrix of size 1600 × 1186 pixels. The apparent vertical
displacements of dots were measured on a grid of interrogation areas. Interrogation
areas of 32 × 32 with a 75 % overlap yielding roughly 29 000 displacement vectors per
image were used. Additional calculations were performed with the interrogation areas
16 × 16 having 50 % overlap. The results obtained with both interrogation grids were
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Figure 2. View of the cylinder fixed at the vertical support, and a part of the screen. The
horizontal size of the support is 2 cm.

found to be in good agreement, although the latter results were characterized by a
higher noise level. The information on measuring errors is presented in the Appendix.

3. Results and discussion
Experiments were performed for circular, horizontal and vertical directions of

oscillations at a/D = 0.15, 0.3 and 0.45 for several values of the non-dimensional
oscillation frequency Ω =ω/N . The characteristic densimetric Stokes number for
the present experiments is β = D2N0/ν =260, where ν is the kinematic viscosity at
the depth corresponding to the origin of the coordinate system xOy. The results of
qualitative visualization reported in Gavrilov & Ermanyuk (1997) have been obtained
at a single value of the orbital motion radius a/D = 0.17, and β = 840.

The kinematic viscosity of the sugar solution increases with the concentration of
sugar. At a value of N0 = 0.9 s−1, the kinematic viscosity of the sugar solution at a
depth of 47 cm (near the bottom of the test tank) is twice as high as in the pure water
(i.e. at the free surface). However, most of the data presented in this paper refer to
the region with a vertical size of 24 cm (i.e. ±6D from the origin of the coordinate
system). Within this region the kinematic viscosity increases by 25 %. Thus the value
of β =260 defined by the reference value of ν at the mid-depth of fluid applies to the
area of measurements with an accuracy of ±13 %. Judging from the experimental
data obtained in the upper and lower quadrants of the coordinate system xOy, the
variation of ν in the measurement zone had practically no influence on the results.
The reference data on the properties of the sugar–water solution were taken from
Vargaftik (1963) and Bronshtein, Gurov & Kuznetsov (1959).

3.1. Oscillations at frequency 0.5 <Ω < 1

First, we describe the results obtained in the frequency range 0.5 <Ω < 1. In this
range, the nonlinear generation of the second harmonic (i.e. waves corresponding
to frequency 2Ω) is physically impossible. The effects observed at 0.5 <Ω < 1 are
illustrated quantitatively by the results obtained at Ω = 0.76. At this frequency, the
internal-wave beams forming the ‘St Andrew’s cross’ pattern are inclined at the angle
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(a)

(b)

(c)
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–0.21 0.21

–0.33 0.33

Figure 3. Internal wave pattern in the case of circular oscillations. Grey levels show the field
of wy . Cases (a), (b) and (c) correspond to a/D = 0.15, 0.3 and 0.45. For all images Ω = 0.76,
τ = 20. The region of high density-gradient perturbations in the vicinity of the cylinder and
the region occupied by the cylinder support are filtered out.

θ = 41◦ to the vertical in accordance with the dispersion relation:

θ = arccosΩ. (3.1)

Typical synthetic schlieren images of internal waves generated by orbital clockwise
motion and horizontal oscillations of a circular cylinder are shown in figures 3 and 4,
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(a)

(b)

(c)

–0.07 0.07

–0.14 0.14

–0.21 0.21

Figure 4. Internal wave pattern in the case of horizontal oscillations. Other details are the
same as in figure 3.

respectively. The grey levels indicate the field of wy . Cases (a), (b) and (c) in figures 3
and 4 correspond to a/D = 0.15, 0.3 and 0.45. All the images are taken at τ = 20,
where non-dimensional time is defined as τ = t/T , with T = 2π/ω. The motion starts
at τ = 0. The images shown in figure 3 correspond to the phase of motion when the
cylinder centre passes the upper point of the trajectory (xc = 0, yc = a). For the images
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shown in figure 4, the phase of horizontal oscillations corresponds to xc = −a. The
patterns shown in figures 3 and 4 have different symmetry properties. In the case of
circular oscillations, we observe symmetry with respect to rotation by 180◦, and in
the case of horizontal oscillations, the pattern has mirror symmetry with respect to
the horizontal plane y = 0.

For circular oscillations we can see that the internal-wave pattern at the lowest
experimental value of the orbital-motion radius a/D = 0.15 is in good qualitative
agreement with the predictions of the linear theory (see figure 3a). The wave motion
is concentrated within beams passing through the first and third quadrants of
the Cartesian coordinate system, with a weak density-gradient disturbance in the
horizontal stripe extending in the directions α = ±π/2 corresponding to Ω = 0 by
virtue of (3.1). As the radius of the orbital motion increases (see figure 3b, c),
the density-gradient disturbance at zero frequency increases markedly so that for
a/D = 0.45, the maximum magnitudes of wy in the horizontal stripe are higher than
the maximum magnitudes of wy observed in the main wave beams. Also, we can see
that the secondary wave radiation into the second and fourth quadrants markedly
increases with a/D.

For horizontal oscillations (see figure 4), the waves in the ‘St Andrew’s cross’ beams
represent the dominant feature of the observed internal-wave pattern for all studied
values of a/D. The density-gradient ‘zero-frequency’ disturbance remains relatively
small. The presence of this disturbance in the case of rectilinear oscillations has been
mentioned, for example, in Dalziel (2000) and Sutherland & Linden (2002). Since the
density stratification prohibits the formation of the circulating sells observed in the
case of rectilinear oscillation of a cylinder in a homogeneous fluid, the zero-frequency
disturbance may be attributed to diffusive mixing near the sloping boundaries of the
cylinder (Phillips 1970; Wunsch 1970; Linden & Weber 1977; Baidulov & Chashechkin
1993, Baidulov & Chashechkin 1996).

In the case of orbital motion, the development of the zero-frequency disturbance
seems to be associated mainly with the mass-transfer nearly horizontal currents
induced by the moving cylinder. When the cylinder sweeps the upper part of the
trajectory in the clockwise direction, it acts as a piston moving from left to right,
forcing the corresponding horizontal motion of the stratified fluid. In the lower part
of the trajectory, the cylinder acts similarly as a piston moving from right to left.
Since the amplitude of the motion is finite, such forcing results in two counter-directed
currents (from left to right at y > 0 and vice versa at y < 0). This explanation appeals
to the effect akin to blocking, and such a mechanism seems to be effective at Ω < 1
(including vanishingly small Ω) when gravity dominates over inertia.

For better quantitative comparison between the effects observed for circular
and horizontal oscillations, we consider the distributions of wy along the angular
coordinate α. The distributions were sampled with the increment �α = 1◦. The random
measurement noise was filtered out by the standard procedure of Gaussian smoothing
with the bandwidth 3◦. We take distribution wy(α) at distance 6D from the origin
of the coordinate system xOy as a representative one. At this distance, the wave
motions in the inclined beams and the zero-frequency perturbation in the horizontal
stripe are well separated in space for the values of a/D studied in the present
experiments. At the same time we can trace the variations of the shapes of wave
envelopes in the cases of circular and horizontal oscillations. The distributions wy(α)
are shown in figures 5 and 6 for circular and horizontal oscillations, respectively,
where cases (a), (b) and (c) correspond to a/D = 0.15, 0.3 and 0.45. Left- and right-
hand parts in figures 5 and 6 correspond to periods 10 and 20 after the start of
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Figure 5. Profiles of wy(α) in the case of circular oscillations for periods number 10 (left-hand
side) and 20 (right-hand side) after the start of the motion. All profiles are taken at distance
6D from the origin of the coordinate system shown in figure 1, Ω = 0.76. The phase increment
between the successive profiles is π/3. Cases (a), (b) and (c) correspond to a/D = 0.15, 0.3 and
0.45. The envelope magnitude 2Aw is defined in the left-hand profiles.

the motion. Successive profiles wy(α) are shown with the phase increment of π/3
(6 profiles per period). The comparison of profiles taken 10 and 20 periods after
the start of the motion shows that the magnitude of the envelopes 2Aw (defined in
the left-hand parts of figures 5 and 6) is a sufficiently stable quantity that it can
be used as a parameter characterizing the intensity of wave motions in the main
wave beams. The transient effects associated with the formation of wave beams are
discussed later. To characterize at first approximation the linear/nonlinear properties
of waves in the main beams we introduce ηw = Aw/(a/D), which can be interpreted
as a response/excitation ratio. The mean values of ηw at a/D = 0.15, 0.3 and 0.45
are presented in table 1 for circular, horizontal and vertical oscillations. The mean
values were determined from the data obtained for periods 10 and 20 for four beams
in the cases of horizontal and vertical oscillations and for two beams in the case of
circular oscillations. The typical scatter of data was about ±5 % of the mean values.
We can see that at a/D = 0.15 the data are in good agreement with a linear scenario:
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Figure 6. Profiles of wy(α) in the case of horizontal oscillations for periods 10 (left-hand
side) and 20 (right-hand side) after the start of the motion. Legend is the same as in figure 5.

Type of oscillations

Circular Horizontal Vertical

a/D ηw ηrms
w ηw ηrms

w ηw ηrms
w

0.15 0.58 0.59 0.28 0.26 0.27 0.25
0.3 0.42 0.42 0.3 0.29 0.28 0.26
0.45 0.25 0.26 0.26 0.26 0.26 0.23

Table 1. The values of ηw and ηrms
w for different types and amplitudes of oscillations.

ηw in the case of circular oscillations is twice the value of ηw measured for horizontal
and vertical oscillations to within the experimental accuracy. However, for higher
values of a/D we observe strong manifestations of nonlinearity in the case of circular
oscillations.

To illustrate the effects of nonlinearity we have estimated the across-beam
amplitudes by using a procedure similar to that described in Sutherland & Linden
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Figure 7. Envelopes of internal wave beams in the cases of (a) horizontal, (b) vertical, and
(c), (d) circular oscillations. Cases (a) – (c) correspond to the beams passing through the first
quadrant of the coordinate system xOy; case (d) corresponds to the secondary wave beam
in the fourth quadrant. The envelopes are calculated for period 20 after the start-up of the
motion. All envelopes correspond to distance 6D from the point O , and Ω = 0.76. Black, grey
and light grey lines correspond to a/D = 0.15, 0.3 and 0.45, respectively. Note the difference
of the vertical scales in the figures.

(2002) (a typical resulting distribution of across-beam amplitude is shown in their
figure 10). The envelopes were obtained by calculating the root-mean-square (r.m.s.)
average of time series of wy and multiplying them by 21/2 to obtain the distribution
of amplitudes of fluctuations of wa

y over α. The r.m.s. values were calculated using 12
samples of wy taken at the twentieth period of oscillation. Further, we normalize the
ordinates of the envelopes by a/D. The resulting envelopes Wa

y = wa
y/(a/D) are shown

in figure 7, where cases (a), (b) and (c) correspond to horizontal, vertical and circular
oscillations, respectively. The maximum values of the envelopes ηrms

w = max(Wa
y (α))

are given in table 1 together with the values of ηw . We can see that the two methods
of evaluation yield very similar results.

In the case of vertical and horizontal oscillations, the width of the envelopes
increases with a/D, as could be expected. At the same time, ηrms

w depends only weakly
on a/D. The experiments with vertical and horizontal oscillations were performed
at the same value of Ω . The maximum of Wa

y (α) in the case of vertical oscillations
with a/D = 0.45 appears to be shifted toward smaller α as compared to the case of
horizontal oscillations (compare light grey lines in figure 7a and 7b).

In the case of circular oscillations (figure 7c), we observe strong qualitative and
quantitative variation of the wave envelopes with a/D. At a/D = 0.15, the wave
envelope in the main beam is roughly bell-shaped, similar to the envelopes observed
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(a)

(b)

Figure 8. Flow structure in the near region of the oscillating cylinder for (a) circular and
(b) horizontal oscillations. Left- and right-hand images correspond to τ =2 and 10 in (a) and
τ = 1.75 and 9.75 in (b); a/D =0.45, Ω = 0.76. The cylinder centre is located at xc = 0, yc = a
in (a) and xc = 0, yc =0 in (b).

for the rectilinear oscillations (figure 7a, b). As a/D increases, the envelope tends to
be first bi-modal (a/D = 0.3) and then plateau-shaped (a/D = 0.45).

The shape of the envelopes in the secondary wave beam at low a/D is obscured
by the instrumental noise (figure 7d). However, at a/D = 0.45, the signal-to-noise
ratio is sufficiently large and the shape of the envelope is well defined. We observe
a local minimum of the envelope at the angle α ≈ 135◦. This is in agreement with
the profiles shown in figure 5(c) and with the data presented at the spatiotemporal
images discussed further in the text.

As a/D increases, the intensity of the waves radiated in the main beams in the case
of circular oscillations drastically decreases compared to the values that might be
expected in the case of a linear process. For example, at a/D =0.45, the values of ηw

and ηrms
w measured for circular oscillations practically coincide with those measured

for vertical and horizontal oscillations (see table 1). We believe that the decrease of
ηw and ηrms

w with increase of a/D in the case of circular oscillations is associated with
the additional energy dissipation due to stirring in the near region of the cylinder,
and due to generation of nearly horizontal currents.

The patterns of stirring in the near region of the cylinder are shown in figure 8(a)
and 8(b) for circular and horizontal oscillations, respectively. The visualization was
performed by capturing the image of an illuminated pattern of black and white
stripes through the bulk of the fluid. This simple method effectively reveals the
qualitative features of the flow structure (Ermanyuk & Gavrilov 2007). The images
are taken at τ = 2 and 10 in the case of orbital motion and at τ = 1.75 and 9.75 in
the case of horizontal oscillations at a/D = 0.45 and Ω =0.76. We can see that the
size of the stirred region in the case of circular oscillations far exceeds the size of
the stirred region in the case of horizontal oscillations. Periodic vortex generation in
the stirred region owing to the orbital motion of the cylinder is believed to be the



Internal waves generated by large-amplitude oscillations of a circular cylinder 343

180(a)

(b)

135

α (deg.) 90

45

0.2

0.1

wy 0

–0.1

–0.2
0 5 10

τ

15 20

0 5 10

3

1 2

4

15 20

Figure 9. (a) Spatiotemporal image wy(α, τ ) and (b) representative time-series wy(τ ) at
different values of α in the case of circular oscillations at a/D = 0.45. The data correspond to
distance r = 6D, Ω = 0.76. Lines 1 – 4 in (b) correspond to α = 45◦, 135◦, 87◦, 95◦, respectively.

main excitation mechanism for secondary internal-wave radiation into the second and
fourth quadrants.

The diagrams of flow regimes for vertical and horizontal oscillations of a circular
cylinder at 0.15 <a/D < 2 and 0.16 < Ω < 6 have been obtained in Xu et al. (1997).
The range of experimental parameters covered in the present study corresponds to
the regimes identified in Xu et al. (1997) as ‘weakly detached flow’ and the onset of
‘localized mixing’, which is in agreement with our data for rectilinear oscillations.

The time evolutions of wy(α, τ ) for circular and horizontal oscillations at distance
6D from the origin are shown in figures 9(a) and 10(a) in the form of spatiotemporal
images for a/D = 0.45, Ω =0.76 (a similar technique has been used in Sutherland &
Linden 2002). The first 20 periods after the start are shown. The profiles wy(α) were
sampled at the rate of 12 profiles per period. Figures 9(b) and 10(b) show the cross-
sections of the spatiotemporal images along the time axis for a set of representative
angles. In the case of circular oscillations, the representative values of α are taken
as 45◦ and 135◦, approximately corresponding to the middle of the main beam and
to the local minimum of the envelope in the secondary wave beam, and 87◦ and
95◦ corresponding to maximum positive and negative values of wy in the horizontal
stripe. In the case of horizontal oscillations, the representative values of α are taken
as 42◦ and 138◦, approximately corresponding to the maximums of the envelope,
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Figure 10. (a) Spatiotemporal image wy(α, τ ) and (b) representative time series wy(τ ) at
different values of α in the case of horizontal oscillations at a/D = 0.45. The data correspond
to distance r = 6D, Ω = 0.76. Lines 1–3 in (b) correspond to α = 42◦, 138◦, 90◦, respectively.
Owing to mirror symmetry, lines 1 and 2 practically coincide.

and 90◦ corresponding to maximum disturbance at ‘zero’ frequency. It can be seen
that the transient processes in the case of circular and horizontal oscillations are
essentially different. In the case of horizontal oscillations the oscillation magnitude
(lines 1 and 2 in figure 10b) in the wave beams tend to approach the steady-state value
monotonically, whereas in the case of circular oscillations it tends first to overshoot
(line 1 in figure 9b) the steady-state value. Note that because of mirror symmetry,
lines 1 and 2 in figure 10(b) practically coincide. The oscillatory process represented
by lines 1 and 2 in figure 10(b) reaches the steady state at τ between 7 and 10. The
duration of the transient process is in good agreement with earlier experimental data
presented in a preliminary paper by Ermanyuk & Gavrilov (2005) for a vertically
oscillating cylinder. In Ermanyuk & Gavrilov (2005), the fields of wy were sampled
at a fixed phase of vertical oscillations of a circular cylinder (i.e. at the rate of one
image per period of oscillations) and the time scale of transients was evaluated from
the period-to-period evolution of an appropriately formulated correlation coefficient
for distributions wy(α) taken at a set of distances from the body. The data obtained
in Ermanyuk & Gavrilov (2005) at a/D = 0.3, Ω =0.7, D = 2 cm and N = 1.05 s−1

suggest the time scale of the transient processes τ ≈ 6 for r = 4D.
Comparing line 1 in figure 9(b) with line 1 in figure 10(b) at τ > 10 (i.e. when the

steady-state oscillations are reached), we observe a higher cycle-to-cycle amplitude
variation in the former case. We believe that the fluctuations of the amplitude in the
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case of orbital motion are related to cycle-to-cycle variability of the vortex generation
in the region of intense stirring around the cylinder.

Note that the transient process observed with the novel internal-wave beam
generator described in Gostiaux et al. (2007) reminds us of a sudden ‘switch-on’
of sine oscillations (see figure 6a therein) with vanishingly short transients. In the
present study, in the main beams we observe transient processes evolving at a time
scale of several periods. These experimental facts emphasize the importance of further
investigations into the relation between the dynamics of transients and the particular
mechanisms of internal-wave excitation.

The time evolution of the secondary wave beam in the case of circular oscillations
has some interesting properties. A closer inspection of the upper part of figure 9(a)
shows that after approximately 8 periods of oscillation the secondary wave beam
starts to separate into two parallel beams so that the direction α = 135◦ approximately
correspond to the minimum of the wave intensity: at 15 < τ < 20 the variation of the
grey level along α = 135◦ is small, while above and below this line the variation of
the grey level with τ is much more pronounced. Small wave intensity at α =135◦, i.e.
approximately in the middle of the secondary wave beam, suggests that the wave-
making zones are located close to the upper and the lower points of the region swept
by the cylinder. Line 2 in figure 9(b) shows that the intensity of fluctuations of wy at
α = 135◦ reaches a maximum at τ � 8 and gradually decays at 8<τ < 20. The time
scale of the secondary wave beam evolution may be associated with the dynamics
and evolution of the stirred region around the cylinder. The time scale of the vorticity
diffusion is known to be of order l2/ν, where l is the typical length scale of a vortex
structure. The time scales 8T and 20T suggest l between 0.5D and 0.8D.

In the horizontal stripe, maximum positive and negative disturbances (lines 3 and
4 in figure 9b) in the case of circular oscillations do not reach saturated values within
the first 20 periods of oscillations. Since there is a continuous horizontal pumping of
fluid owing to orbital motion of the cylinder, there are reasons to believe that the
steady state in the horizontal stripe cannot be reached. The orbital motion ultimately
leads to formation of sharp horizontal density interfaces. In contrast, in the case of
horizontal oscillations the ‘zero-frequency’ disturbance tends not to increase during
the span of time studied (line 3 in figure 10b). Additional data on the processes in the
horizontal stripe at 0 <Ω < 0.5 and Ω > 1 are presented in subsequent subsections.

To visualize the horizontal currents induced by circular oscillations, vertical tracers
in the otherwise quiescent fluid were produced by dropping small grains of sugar
covered with dye. The evolution of the tracer profiles owing to horizontal currents
after the start of the orbital motion was video recorded. The typical shape of the
tracers is illustrated in figure 11(a) for Ω = 0.76, a/D =0.45, τ = 5. Figure 11(b) shows
the time evolution of the normalized horizontal displacements of points A and B

defined in figure 11(a). The normalized displacements are defined as �ξA = (xA−x0)/D
and �ξB = (xB − x0)/D, where x0 is the initial horizontal coordinate of a tracer line
in the quiescent fluid. We can see that for a fixed τ we have |�ξA| < |�ξB |, i.e. the
magnitude of a displacement directed toward the cylinder is higher than the magnitude
of the outward-directed displacement. The typical vertical size of the current directed
toward the cylinder is smaller than that of the outward-directed current so that the
mass conservation for the flow across the vertical line drawn at the initial position
of the tracer is fulfilled. We should keep in mind that the whole wave and current
pattern in the case of circular oscillations has a symmetry with respect to rotation by
180◦ about point O . At a fixed time instance, the displacements decay with distance
while the vertical size of the current involved in the quasi-horizontal motion increases
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Figure 11. Horizontal currents induced by clockwise circular oscillations of the cylinder.
Experimental conditions: Ω = 0.76, a/D = 0.45. (a) Sketch of the tracer distortions. Lines 1
and 3 corresponding to τ = 0 are located at distances 5D and 7.5D from the point O . Lines
2, 4 correspond to τ = 5. The dashed line shows the circular orbit of the cylinder centre.
(b) Normalized horizontal displacements of points A (solid symbols) and B (open symbols)
vs. non-dimensional time. Circles and triangles refer to the tracers initially located at distances
5D and 7.5D, respectively.

with distance, as is apparent from the data obtained at x0 = 5D and x0 = 7.5D

(compare lines 2 and 4 in figure 11a). The data shown in figure 11(b) suggest that
the horizontal displacements increase with time indefinitely, while the velocity of the
nearly horizontal currents at a given distance from the cylinder seems to approach a
saturated value.

3.2. Oscillation at frequency 0 < Ω < 0.5

It is well-known (see Mowbray & Rarity 1967) that a cylinder oscillating at frequency
0 <Ω < 0.5 can generate not only the waves at fundamental frequency Ω , but also the
waves corresponding to frequency 2Ω . This nonlinear excitation mechanism has been
studied in more detail in Sutherland & Linden (2002), where we can find quantitative
data on the generation of internal waves at frequency 2Ω by vertical oscillations of
an elliptic cylinder. The typical wave patterns observed in the case of circular and
horizontal oscillations in our experiments are shown in figures 12(a) and 12(b) for
a/D = 0.6, Ω = 0.38, τ = 10. It can be seen that in the case of clockwise orbital motion
of the cylinder, internal waves of frequency Ω and 2Ω are primarily radiated into
the first and third quadrants of the coordinate system xOy. In the case of horizontal
oscillations, the pattern has mirror symmetry with respect to the plane y = 0. The
corresponding spatiotemporal images wy(α, τ ) obtained at r = 10D for the first 10
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Figure 12. Internal wave patterns in the cases of (a) circular and (b) horizontal oscillations
at a/D = 0.6, Ω =0.38, τ = 10. Grey levels show the field of wy .

periods of oscillations are shown in figures 13(a) and 14(a). The main trends seen in
these figures for circular and horizontal oscillations correspond to those observed in
figures 9(a) and 10(a).

It is interesting to compare the intensities of oscillations of wy in the beams
corresponding to fundamental and doubled frequencies in the cases of circular and
horizontal oscillations. In figures 13(b) and 14(b), we can see the cross-sections of
the spatiotemporal images along the time axis for a set of representative angles. The
representative values of α are taken as α =41◦ and 68◦, approximately corresponding
to the middles of the beams radiated at 2Ω = 0.76 and Ω =0.38. In the case of
circular oscillations, the maximum oscillation amplitudes of wy in the beam radiated
at frequency 2Ω (line 2 in figure 13b) are only about 15 % smaller than those
corresponding to the beam radiated at frequency Ω (line 1 in figure 13b). In the case
of horizontal oscillations, the oscillation amplitudes of wy corresponding to frequency
2Ω are approximately 3 times smaller than those corresponding to frequency Ω

(compare lines 1 and 2 in figure 14b). The cross-comparison of figures 13 and 14
emphasizes strongly the nonlinear character of wave generation in the case of circular
oscillations. The data shown in figures 13 and 14 correspond to the distance 10D from
the origin of the coordinate system. At this distance there is still some interaction
between the beams corresponding to frequencies Ω and 2Ω . In addition to the
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Figure 13. (a) Spatiotemporal image wy(α, τ ) and (b) representative time-series wy(τ ) at
different values of α in the case of circular oscillations. The data correspond to distance
r = 10D. Experimental conditions are the same as in figure 12. Lines 1–4 in (b) correspond to
α = 68◦, 41◦, 87◦, and 95◦, respectively.

dominant frequency component corresponding to 2Ω , the fluctuations of wy at
α = 41◦ (lines 2 in figures 13b and 14b) contain the component corresponding to
frequency Ω .

The development of the perturbations in the horizontal stripe is illustrated by
the time series wy(τ ) taken at α = 87◦ and 95◦ in the case of circular oscillations
(lines 3 and 4 in figure 13b), and α = 90◦ in the case of horizontal oscillations (line
3 in figure 14b). Additional experiments have been performed at lower oscillations
frequencies (Ω ≈ 0.2). The trends observed for the perturbations in the horizontal
stripe in the case 0 < Ω < 0.5 are, by and large, similar to those observed in the case
0.5 <Ω < 1 (compare figures 8, 9 and 13, 14).

3.3. Oscillation at frequency Ω > 1

In § 3.1, we have mentioned that the sweeping orbital motion of the cylinder should
lead to the piston-type excitation of the counter-directed nearly horizontal currents
when the buoyancy effects dominate over inertia and the amplitude of the circular
oscillation is finite. The most important feature of such a forcing is that it creates
currents having non-zero angular momentum with respect to point O , the origin of
the coordinate system shown in figure 1.
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Figure 14. (a) Spatiotemporal image wy(α, τ ) and (b) representative time-series wy(τ ) at
different values of α in the case of circular oscillations. The data correspond to distance
r = 10D. Experimental conditions are the same as in figure 12. Lines 1–3 in (b) correspond to
α = 68◦, 41◦, 90◦, respectively.

In the viscous case we can expect that the cylinder undergoing the orbital motion
experiences the viscous drag force which produce a non-zero time-averaged moment
with respect to the point O . Correspondingly, there must be a current of fluid with
a non-zero time-averaged angular momentum with respect to O . In the case of a
homogeneous viscous fluid, such a current is represented by a steady circulation
around the cylinder (Longuet-Higgins 1970; Riley 1971). Since the presence of the
vertical density gradient suppresses the vertical fluid motions, in a uniformly stratified
viscous fluid we observe nearly horizontal currents having the non-zero time-average
angular momentum with respect to O . This mechanism appeals to the global balance
of the angular momentum in a viscous uniformly stratified fluid and applies regardless
to the value of Ω . Thus, in the case of circular oscillations, we may expect the presence
of horizontal currents not only at Ω < 1, but also at Ω > 1 when inertia dominates
over gravity in the near field of the cylinder. By contrast, in the case of rectilinear
oscillations, the time-average angular momentum must be zero and we cannot expect
large perturbations at ‘zero’ frequency.

The field of wy generated by the orbital clockwise motion of a circular cylinder
at Ω = 1.4 and a/D = 0.3 is shown in figure 15. The image corresponds to the
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Figure 15. The ‘zero-frequency’ disturbance generated by circular oscillations at Ω = 1.4,
a/D =0.3, τ = 12. The cylinder centre is located at xc = 0, yc = a. Grey levels indicate the field
of wy .

non-dimensional time τ = 12, the cylinder centre is located in the point xc = 0, yc = a.
For greater insight into the dynamics of the processes in the horizontal stripe at
Ω > 1, a series of experiments has been performed for circular, horizontal and vertical
oscillations. The results for the fixed amplitude a/D = 0.3 and frequency varying in
the range 1.1 <Ω < 2.6 are shown in figure 16 in the form of the distributions wy(α)
taken at τ = 12. The distributions were taken at the distance 6D from the origin O of
the coordinate system shown in figure 1, cases (a), (b) and (c) in figure 16 correspond
to circular, horizontal and vertical oscillations, respectively. We can see that at fixed
a/D and τ the magnitude of the perturbations generated by circular oscillations in
the horizontal stripe markedly increases with frequency (figure 16a). The trend toward
increase of the magnitude of perturbations with frequency seems to be present in
the data for vertical and horizontal oscillations (figure 16b, c). However, in the latter
cases, the magnitude of perturbations is smaller by an order of magnitude than in the
former one, and the general trends are somewhat obscured by the instrumental noise.
It is worth mentioning qualitative similarity between the shapes of profiles of wy(α)
for α around 90◦ measured at Ω > 1 (figures 16a, b) and at Ω < 1 (figures 5b and 6b)
for circular and horizontal oscillations. The same is true for vertical oscillations. In
general, the data presented in figure 16 are consistent with the discussion of the
angular momentum balance presented in the beginning of this subsection.

The nearly horizontal currents induced by the clockwise circular oscillations at
Ω > 1 have been visualized by observing the distortion of vertical tracers. The typical
observed shape of the tracer is illustrated in figure 17(a) for Ω = 1.17, a/D =0.45,
τ = 20. It can be seen that the pattern is qualitatively similar to that depicted in
figure 11(a). However, as the frequency of the orbital motion increases, the stirring
and mixing of fluid in the vicinity of the cylinder also increases. Since the mixed
region collapses owing to gravity, the continuous production of the mixed fluid in
the near region of the cylinder leads to the continuous increase of the horizontal size
of the mixed region, and, as result, to the formation of horizontal currents directed
away from the cylinder in the vicinity of y =0. To maintain the mass conservation,
the flow away from the cylinder should be balanced by the inflows of unmixed fluid
toward the upper and the lower parts of the mixing region. Thus at sufficiently high Ω

and a/D, we can observe the distortions of the tracer which are almost symmetrical
with respect to y = 0. The example of such a shape of the tracer is presented in
figure 17(b) for Ω = 2.33, a/D = 0.45, τ = 15. As Ω and a/D decrease, the intensity
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Figure 16. Profiles of wy(α) in the cases of circular, horizontal and vertical oscillations
at Ω > 1. All profiles are taken at fixed non-dimensional time τ =12 and fixed value of
the amplitude a/D = 0.3: thick black, thin black, grey and light grey lines correspond to
(a) Ω = 1.17, 1.4, 1.89, 2.33, (b) Ω = 1.27, 1.55, 1.89, 2.59 (c) Ω = 1.23, 1.55, 1.89, 2.59.

of the currents associated with the production of mixed fluid and the vertical collapse
of the mixed region strongly decreases, and we observe the tracer distortions similar
to those depicted in figures 11(a) and 17(a).

A study on dynamics of mixing and formation of nearly horizontal interfaces by
long-term orbital motion of a circular cylinder as well as the detailed study of the
regimes similar to that depicted in in figure 17(b) fall out of the scope of the present
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Figure 17. Horizontal currents induced by clockwise circular oscillations of the cylinder.
Dashed line shows the circular orbit of the cylinder centre. Oscillation amplitude for both
images is a/D = 0.45. Lines 1 correspond to τ = 0. (a) Ω =1.17, line 1 is located at distance
8D from the point O , line 2 corresponds to τ = 20 (b) Ω = 2.33, line 1 is located at distance
7.5D from the point O , line 2 corresponds to τ = 15

paper. There exists an extensive literature on mixing of a continuously stratified
fluid by different mechanical stirring devices. Discussion of typical experimental
configurations and relevant theoretical analysis can be found, for example, in
Hopfinger (1987) and Balmforth, Smith & Young (1998). Some parallels can be drawn
between the present results and the effects described in the literature on mixing, in
particular, in experimental works on collapse of the mixing region (starting with the
pioneering study by Wu 1969) and the studies where stirring is applied at a boundary
and the layers are extruded into the surrounding non-turbulent fluid (Ivey & Corcos
1982; Thorpe 1982). A distinguishing feature of the present experiments is that the
orbital motion of the cylinder represent an isolated stirring event generating nearly
horizontal currents with a non-zero total angular momentum. Also, the frequency
of oscillation in the present experiments remains comparable with the buoyancy
frequency (Ω < 3) while in the major part of the ‘mixing box’ experiments Ω > 10.
Such an isolated stirring event may be of interest as a model of more complicated
currents with a non-zero total angular momentum.

4. Conclusion
In this work we have performed a comparative experimental study of internal waves

generated by large-amplitude circular and rectilinear oscillations of a circular cylinder
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in a uniformly stratified fluid. The inviscid mechanics of internal wave generation
by circular oscillations of a circular cylinder has been considered in Hurley &
Hood (2001). Linear analysis shows that small circular oscillations in a clockwise
direction generate internal waves only in the beams passing through the first and
third quadrants of the Cartesian coordinate system.

In agreement with the linear scenario, at small amplitude of clockwise circular
oscillations (a/D = 0.15) we observe internal wave beams in the first and third
quadrants. The intensity of these waves is approximately twice the intensity of waves
radiated by purely horizontal or vertical oscillations. The shapes of the wave envelopes
in the cases of small-amplitude circular, horizontal and vertical oscillations remain
by and large similar. Weak nonlinear effects, in particular, (i) generation of a density-
gradient perturbation at ‘zero frequency’, and (ii) wave radiation into the second and
third quadrants, are already detectable for orbital motion at a/D = 0.15. These effects
drastically increase with the motion amplitude.

In a viscous uniformly stratified fluid with no-slip condition at the body surface,
circular and rectilinear oscillations represent different stirring events. Visualization
shows that the typical size of the stirring region in the case of circular oscillations is
much greater than in the case of rectilinear oscillations of the same magnitude. This
intense stirring serves as an additional dissipative mechanism. As a result, the intensity
of wave motion generated by large-amplitude (a/D = 0.3; 0.45) circular oscillations
in the main beams is no longer twice the intensity of waves generated by horizontal
or vertical oscillations. It drops below the value that might be anticipated in a linear
case. At large oscillation amplitudes there is also a notable difference between the
shapes of wave envelopes in the cases of circular and rectilinear oscillations.

Evolution of the secondary wave beams passing through the second and fourth
quadrants is believed to be related to the processes in the stirring region. It is shown
that, in general, circular oscillations tend to generate disturbances evolving on longer
time scale than the disturbances generated by rectilinear oscillations.

When Ω < 0.5 (i.e. the frequency of oscillations is smaller than half of the
buoyancy frequency), nonlinear radiation of waves with frequency 2Ω is possible.
Our experimental results show that waves with frequency 2Ω follow the same trend
as waves with frequency Ω: in the case of clockwise circular oscillations, waves are
primarily radiated into the first and third quadrants of the Cartesian coordinate
system.

Flow visualization shows that circular oscillations generate ‘zero-frequency’
disturbance (which can be interpreted as a specific kind of a columnar mode)
associated with the mass-transfer current induced by the cylinder motion. This
mass-transfer current has a non-zero value of the total angular momentum with
respect to the centre of the cylinder trajectory. The magnitude of the density-gradient
perturbation at zero frequency grows continuously. It does not reach a saturated
value over the typical time of experimental observations (from 20 to 30 periods).
There are reasons to believe that the mass-transfer currents induced by the orbital
motion of the cylinder ultimately lead to the formation of a layered structure. In the
present study, the long-term evolution has not been investigated because of inevitable
difficulties associated with the limited horizontal size of the test tank.
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scientific correspondence. Inventive mechanical work of E.M. Romanov and technical
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Displacement (mm) Measurement error (%) Standard deviation (%)

0.1 −15 ±7
0.3 −8 ±5
0.7 −5 ±4
1.1 −4.5 ±3
1.7 −1.8 ±2
2.8 −1 ±1.6

Table 2. The results of preliminary tests on the measurement accuracy.

supported by Integration program of departments of RAS (project 4.14.1) and by
RFBR-CNRS (project 07-01-92212). The major revision of the paper was prepared
during the stay of E.V.E. as a visiting professor at LEGI, Grenoble.

Appendix. Accuracy of the displacement field measurements
The Dantec Flowmanager software is known to be a reliable tool for cross-

correlation analysis. A comparison of the software performance shown by different
commercially available PIV systems is given in Adrian (2005). The early history of
the method is reviewed in Adrian (1991).

In the present work, the accuracy of the displacement field calculation was tested
by introducing small prescribed translational and angular displacements of the screen
with the help of micrometric screws. In an ideal system, a uniform vertical translation
of the screen would produce identical measurements of vertical displacements in all
interrogation areas. In reality, owing to thermal and electronic noise, the measurement
results have a scatter with respect to the mean value averaged over all interrogation
areas. Also, the mean measured value itself may yield a biased estimate. The results of
our tests for a set of uniform vertical displacements, with associated systematic errors
and standard deviations, are summarized in table 2. The camera was located 350 cm
from the screen, with the field of view 65 × 45 cm2. In experiments with internal waves,
the typical measured apparent displacements were of order 1 mm, corresponding to
the acceptable level of measurement errors. The effects discussed in the paper are well
beyond the possible uncertainty of measurements.

It is worth making some comments on the long-term drift which is typically present
in the synthetic schlieren measurements (see Sutherland & Linden 2002). In some
series of our experiments, the drift was observable at the lowest amplitude a/D = 0.15
of the cylinder oscillations. The experiments with the lowest amplitude were repeated
several times and the series with the minimum drift were selected for further analysis.
At higher a/D, the drift-to-signal ratio was very small. One reason for small drifts
in the present experiments is related to higher value of γ in sugar–water solutions
as compared to salt solutions. The internal waves of equal amplitudes in sugar-
and salt-stratified fluids with the same value of the buoyancy frequency produce
roughly 1.5 times stronger optical distortions in the case of sugar stratification. The
other reason may be related to small overall temperature variations in the laboratory
located in the basement of the building, where the experiments were performed. Care
was taken to minimize thermal convective currents related to the presence of people,
and measuring and analysing devices.
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